Информатика |Informatics
Читайте, заполняйте все пропуски:
convergence drift partial singular variational
We provide a general framework for the stability of solutions to stochastic
differential equations with respect to perturbations of the drift. More precisely, we consider stochastic partial differential equations with
given as the subdifferential of a convex function and prove continuous dependence of the solutions with regard to random Mosco convergence of the convex potentials. In particular, we identify the concept of stochastic
inequalities (SVI) as a well-suited framework to study such stability properties. The generality of the developed framework is then laid out by deducing Trotter type and homogenization results for stochastic fast diffusion and stochastic
p-Laplace equations. In addition, we provide an SVI treatment for stochastic nonlocal p-Laplace equations and prove their
to the respective local models.
Check
Hint
OK